Copied to
clipboard

G = S3×C42⋊C3order 288 = 25·32

Direct product of S3 and C42⋊C3

direct product, metabelian, soluble, monomial, A-group

Aliases: S3×C42⋊C3, (C4×C12)⋊4C6, (S3×C42)⋊C3, C424(C3×S3), C22.3(S3×A4), (C22×S3).3A4, C3⋊(C2×C42⋊C3), (C3×C42⋊C3)⋊5C2, (C2×C6).3(C2×A4), SmallGroup(288,407)

Series: Derived Chief Lower central Upper central

C1C4×C12 — S3×C42⋊C3
C1C22C2×C6C4×C12C3×C42⋊C3 — S3×C42⋊C3
C4×C12 — S3×C42⋊C3
C1

Generators and relations for S3×C42⋊C3
 G = < a,b,c,d,e | a3=b2=c4=d4=e3=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=cd-1, ede-1=c-1d2 >

Subgroups: 354 in 59 conjugacy classes, 12 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C22, S3, S3, C6, C2×C4, C23, C32, Dic3, C12, A4, D6, C2×C6, C42, C42, C22×C4, C3×S3, C4×S3, C2×Dic3, C2×C12, C2×A4, C22×S3, C2×C42, C3×A4, C42⋊C3, C42⋊C3, C4×Dic3, C4×C12, S3×C2×C4, S3×A4, C2×C42⋊C3, S3×C42, C3×C42⋊C3, S3×C42⋊C3
Quotients: C1, C2, C3, S3, C6, A4, C3×S3, C2×A4, C42⋊C3, S3×A4, C2×C42⋊C3, S3×C42⋊C3

Character table of S3×C42⋊C3

 class 12A2B2C3A3B3C3D3E4A4B4C4D4E4F4G4H6A6B6C12A12B12C12D
 size 133921616323233339999648486666
ρ1111111111111111111111111    trivial
ρ211-1-1111111111-1-1-1-11-1-11111    linear of order 2
ρ311-1-11ζ3ζ32ζ32ζ31111-1-1-1-11ζ6ζ651111    linear of order 6
ρ411-1-11ζ32ζ3ζ3ζ321111-1-1-1-11ζ65ζ61111    linear of order 6
ρ511111ζ32ζ3ζ3ζ32111111111ζ3ζ321111    linear of order 3
ρ611111ζ3ζ32ζ32ζ3111111111ζ32ζ31111    linear of order 3
ρ72200-122-1-122220000-100-1-1-1-1    orthogonal lifted from S3
ρ82200-1-1+-3-1--3ζ6ζ6522220000-100-1-1-1-1    complex lifted from C3×S3
ρ92200-1-1--3-1+-3ζ65ζ622220000-100-1-1-1-1    complex lifted from C3×S3
ρ10333330000-1-1-1-1-1-1-1-1300-1-1-1-1    orthogonal lifted from A4
ρ1133-3-330000-1-1-1-11111300-1-1-1-1    orthogonal lifted from C2×A4
ρ123-13-130000-1+2i-1-2i11-1+2i-1-2i11-10011-1+2i-1-2i    complex lifted from C42⋊C3
ρ133-13-13000011-1+2i-1-2i11-1+2i-1-2i-100-1+2i-1-2i11    complex lifted from C42⋊C3
ρ143-13-130000-1-2i-1+2i11-1-2i-1+2i11-10011-1-2i-1+2i    complex lifted from C42⋊C3
ρ153-13-13000011-1-2i-1+2i11-1-2i-1+2i-100-1-2i-1+2i11    complex lifted from C42⋊C3
ρ163-1-3130000-1-2i-1+2i111+2i1-2i-1-1-10011-1-2i-1+2i    complex lifted from C2×C42⋊C3
ρ173-1-3130000-1+2i-1-2i111-2i1+2i-1-1-10011-1+2i-1-2i    complex lifted from C2×C42⋊C3
ρ183-1-313000011-1+2i-1-2i-1-11-2i1+2i-100-1+2i-1-2i11    complex lifted from C2×C42⋊C3
ρ193-1-313000011-1-2i-1+2i-1-11+2i1-2i-100-1-2i-1+2i11    complex lifted from C2×C42⋊C3
ρ206600-30000-2-2-2-20000-3001111    orthogonal lifted from S3×A4
ρ216-200-30000-2+4i-2-4i220000100-1-11-2i1+2i    complex faithful
ρ226-200-3000022-2+4i-2-4i00001001-2i1+2i-1-1    complex faithful
ρ236-200-3000022-2-4i-2+4i00001001+2i1-2i-1-1    complex faithful
ρ246-200-30000-2-4i-2+4i220000100-1-11+2i1-2i    complex faithful

Smallest permutation representation of S3×C42⋊C3
On 36 points
Generators in S36
(1 6 8)(2 7 11)(3 12 10)(4 5 9)(13 33 28)(14 34 25)(15 35 26)(16 36 27)(17 21 30)(18 22 31)(19 23 32)(20 24 29)
(1 6)(3 10)(4 9)(7 11)(13 33)(14 34)(15 35)(16 36)(17 30)(18 31)(19 32)(20 29)
(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)
(1 9 7 10)(2 12 8 5)(3 6 4 11)(13 14 15 16)(17 19)(18 20)(21 23)(22 24)(25 26 27 28)(29 31)(30 32)(33 34 35 36)
(1 29 14)(2 22 27)(3 17 33)(4 19 35)(5 23 26)(6 20 34)(7 31 16)(8 24 25)(9 32 15)(10 30 13)(11 18 36)(12 21 28)

G:=sub<Sym(36)| (1,6,8)(2,7,11)(3,12,10)(4,5,9)(13,33,28)(14,34,25)(15,35,26)(16,36,27)(17,21,30)(18,22,31)(19,23,32)(20,24,29), (1,6)(3,10)(4,9)(7,11)(13,33)(14,34)(15,35)(16,36)(17,30)(18,31)(19,32)(20,29), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,9,7,10)(2,12,8,5)(3,6,4,11)(13,14,15,16)(17,19)(18,20)(21,23)(22,24)(25,26,27,28)(29,31)(30,32)(33,34,35,36), (1,29,14)(2,22,27)(3,17,33)(4,19,35)(5,23,26)(6,20,34)(7,31,16)(8,24,25)(9,32,15)(10,30,13)(11,18,36)(12,21,28)>;

G:=Group( (1,6,8)(2,7,11)(3,12,10)(4,5,9)(13,33,28)(14,34,25)(15,35,26)(16,36,27)(17,21,30)(18,22,31)(19,23,32)(20,24,29), (1,6)(3,10)(4,9)(7,11)(13,33)(14,34)(15,35)(16,36)(17,30)(18,31)(19,32)(20,29), (13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36), (1,9,7,10)(2,12,8,5)(3,6,4,11)(13,14,15,16)(17,19)(18,20)(21,23)(22,24)(25,26,27,28)(29,31)(30,32)(33,34,35,36), (1,29,14)(2,22,27)(3,17,33)(4,19,35)(5,23,26)(6,20,34)(7,31,16)(8,24,25)(9,32,15)(10,30,13)(11,18,36)(12,21,28) );

G=PermutationGroup([[(1,6,8),(2,7,11),(3,12,10),(4,5,9),(13,33,28),(14,34,25),(15,35,26),(16,36,27),(17,21,30),(18,22,31),(19,23,32),(20,24,29)], [(1,6),(3,10),(4,9),(7,11),(13,33),(14,34),(15,35),(16,36),(17,30),(18,31),(19,32),(20,29)], [(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36)], [(1,9,7,10),(2,12,8,5),(3,6,4,11),(13,14,15,16),(17,19),(18,20),(21,23),(22,24),(25,26,27,28),(29,31),(30,32),(33,34,35,36)], [(1,29,14),(2,22,27),(3,17,33),(4,19,35),(5,23,26),(6,20,34),(7,31,16),(8,24,25),(9,32,15),(10,30,13),(11,18,36),(12,21,28)]])

Matrix representation of S3×C42⋊C3 in GL5(𝔽13)

012000
112000
00100
00010
00001
,
01000
10000
00100
00010
00001
,
10000
01000
00525
00080
00001
,
10000
01000
00590
000120
00005
,
10000
01000
00900
00001
0011104

G:=sub<GL(5,GF(13))| [0,1,0,0,0,12,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,2,8,0,0,0,5,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,9,12,0,0,0,0,0,5],[1,0,0,0,0,0,1,0,0,0,0,0,9,0,11,0,0,0,0,10,0,0,0,1,4] >;

S3×C42⋊C3 in GAP, Magma, Sage, TeX

S_3\times C_4^2\rtimes C_3
% in TeX

G:=Group("S3xC4^2:C3");
// GroupNames label

G:=SmallGroup(288,407);
// by ID

G=gap.SmallGroup(288,407);
# by ID

G:=PCGroup([7,-2,-3,-2,2,-3,-2,2,198,772,2110,360,1684,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^4=e^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c*d^-1,e*d*e^-1=c^-1*d^2>;
// generators/relations

Export

Character table of S3×C42⋊C3 in TeX

׿
×
𝔽